49 research outputs found

    SymGRASS: a database of sugarcane orthologous genes involved in arbuscular mycorrhiza and root nodule symbiosis : from Seventh International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, (CIBB 2010), Palermo, Italy, 16 - 18 September 2010

    Get PDF
    Background: The rationale for gathering information from plants procuring nitrogen through symbiotic interactions controlled by a common genetic program for a sustainable biofuel production is the high energy demanding application of synthetic nitrogen fertilizers. We curated sequence information publicly available for the biofuel plant sugarcane, performed an analysis of the common SYM pathway known to control symbiosis in other plants, and provide results, sequences and literature links as an online database. Methods: Sugarcane sequences and informations were downloaded from the nucEST database, cleaned and trimmed with seqclean, assembled with TGICL plus translating mapping method, and annotated. The annotation is based on BLAST searches against a local formatted plant Uniprot90 generated with CD-HIT for functional assignment, rpsBLAST to CDD database for conserved domain analysis, and BLAST search to sorghum's for Gene Ontology (GO) assignment. Gene expression was normalized according the Unigene standard, presented as ESTs/100 kb. Protein sequences known in the SYM pathway were used as queries to search the SymGRASS sequence database. Additionally, antimicrobial peptides described in the PhytAMP database served as queries to retrieve and generate expression profiles of these defense genes in the libraries compared to the libraries obtained under symbiotic interactions. Results: We describe the SymGRASS, a database of sugarcane orthologous genes involved in arbuscular mycorrhiza (AM) and root nodule (RN) symbiosis. The database aggregates knowledge about sequences, tissues, organ, developmental stages and experimental conditions, and provides annotation and level of gene expression for sugarcane transcripts and SYM orthologous genes in sugarcane through a web interface. Several candidate genes were found for all nodes in the pathway, and interestingly a set of symbiosis specific genes was found. Conclusions: The knowledge integrated in SymGRASS may guide studies on molecular, cellular and physiological mechanisms by which sugarcane controls the establishment and efficiency of endophytic associations. We believe that the candidate sequences for the SYM pathway together with the pool of exclusively expressed tentative consensus (TC) sequences are crucial for the design of molecular studies to unravel the mechanisms controlling the establishment of symbioses in sugarcane, ultimately serving as a basis for the improvement of grass crops

    Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.)

    Get PDF
    [EN] Background: Frost is one of the main abiotic stresses limiting plant distribution and crop production. To cope with the stress, plants evolved adaptations known as cold acclimation or chilling tolerance to maximize frost tolerance. Cold acclimation is a progressive acquisition of freezing tolerance by plants subjected to low non-freezing temperatures which subsequently allows them to survive exposure to frost. Lentil is a cool season grain legume that is challenged by winter frost in some areas of its cultivation. Results: To better understand the genetic base of frost tolerance differential gene expression in response to cold acclimation was investigated. Recombinant inbred lines (RILs) from the cross Precoz x WA8649041 were first classified as cold tolerant or cold susceptible according to their response to temperatures between -3 to -15 °C. Then, RILs from both extremes of the response curve were cold acclimated and the leaf transcriptomes of two bulks each of eight frost tolerant and seven cold susceptible RILs were investigated by Deep Super-SAGE transcriptome profiling. Thus, four RNA bulks were analysed: the acclimated susceptible, the acclimated tolerant and the respective controls (non-acclimated susceptible and non-acclimated tolerant). Approximately 16.5 million 26 nucleotide long Super-SAGE tags were sequenced in the four sets (between ~3 and 5.4 millions). In total, 133,077 different unitags, each representing a particular transcript isoform, were identified in these four sets. Tags which showed a significantly different abundance in any of the bulks (fold change ≥4.0 and a significant p-value <0.001) were selected and used to identify the corresponding lentil gene sequence. Three hundred of such lentil sequences were identified. Most of their known homologs coded for glycine-rich, cold and drought-regulated proteins, dormancy-associated proteins, proline-rich proteins (PRPs) and other membrane proteins. These were generally but not exclusively over-expressed in the acclimated tolerant lines. Conclusions: This set of candidate genes implicated in the response to frost in lentil represents an useful base for deeper and more detailed investigations into this important agronomic trait in futureSIThis work was supported by the E.U. ERA-PG 075B LEGRESIST project, the AGL2013-44714-R project from the Spanish Ministerio de Economía y Competitividad (co-financed with FEDER funds), and a predoctoral fellowship (A. Barrios) from the ITACyL

    HTS YBCO Resonator Configuration with Coplanar Optimized Flux Concentrator Strongly Coupled to rf SQUID

    Full text link
    We developed a novel magnetic coupling module formed of a monolayer superconducting flux concentrator, which is integrated with a coplanar resonator strongly coupled to HTS rf-SQUID. Three types of resonators, including a long stripline resonator between input loop and pick-up loop of the flux concentrator, a complementary split ring resonator (CSRR), and also a spiral shape inside the input loop are explored. The resonance quality factors as well as the coupling to the SQUID of different patterns of these three types of the resonators is evaluated using Finite Element Method (FEM) simulations. Several readout methods to couple the electronic system to the resonators are tested, including inductive (coil) and capacitive (transmission line) couplings, and the optimum readout is reported for each of the resonators. Among the evaluated resonator types, a spiral shape resonator with optimal design showing the highest quality factor (5900) together with the strongest coupling to the SQUID (-0.5 dB) at resonance frequency of 836 MHz, is fabricated using 200 nm thick superconducting YBCO on a 1 mm thick crystalline LaAlO3 substrate. The flux concentrator of the module is optimized by the variation of its linewidths and also its input loop radius to obtain maximum flux transformation efficiency.Comment: 5 page

    Loss of the Chr16p11.2 ASD candidate gene QPRT leads to aberrant neuronal differentiation in the SH-SY5Y neuronal cell model

    Get PDF
    Background: Altered neuronal development is discussed as the underlying pathogenic mechanism of autism spectrum disorders (ASD). Copy number variations of 16p11.2 have recurrently been identified in individuals with ASD. Of the 29 genes within this region, quinolinate phosphoribosyltransferase (QPRT) showed the strongest regulation during neuronal differentiation of SH-SY5Y neuroblastoma cells. We hypothesized a causal relation between this tryptophan metabolism-related enzyme and neuronal differentiation. We thus analyzed the effect of QPRT on the differentiation of SH-SY5Y and specifically focused on neuronal morphology, metabolites of the tryptophan pathway, and the neurodevelopmental transcriptome. Methods: The gene dosage-dependent change of QPRT expression following Chr16p11.2 deletion was investigated in a lymphoblastoid cell line (LCL) of a deletion carrier and compared to his non-carrier parents. Expression of QPRT was tested for correlation with neuromorphology in SH-SY5Y cells. QPRT function was inhibited in SH-SY5Y neuroblastoma cells using (i) siRNA knockdown (KD), (ii) chemical mimicking of loss of QPRT, and (iii) complete CRISPR/Cas9-mediated knock out (KO). QPRT-KD cells underwent morphological analysis. Chemically inhibited and QPRT-KO cells were characterized using viability assays. Additionally, QPRT-KO cells underwent metabolite and whole transcriptome analyses. Genes differentially expressed upon KO of QPRT were tested for enrichment in biological processes and co-regulated gene-networks of the human brain. Results: QPRT expression was reduced in the LCL of the deletion carrier and significantly correlated with the neuritic complexity of SH-SY5Y. The reduction of QPRT altered neuronal morphology of differentiated SH-SY5Y cells. Chemical inhibition as well as complete KO of the gene were lethal upon induction of neuronal differentiation, but not proliferation. The QPRT-associated tryptophan pathway was not affected by KO. At the transcriptome level, genes linked to neurodevelopmental processes and synaptic structures were affected. Differentially regulated genes were enriched for ASD candidates, and co-regulated gene networks were implicated in the development of the dorsolateral prefrontal cortex, the hippocampus, and the amygdala. Conclusions: In this study, QPRT was causally related to in vitro neuronal differentiation of SH-SY5Y cells and affected the regulation of genes and gene networks previously implicated in ASD. Thus, our data suggest that QPRT may play an important role in the pathogenesis of ASD in Chr16p11.2 deletion carriers

    Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis

    Get PDF
    Lathyrus sativus (grass pea) is a temperate grain legume crop with a great potential for expansion in dry areas or zones that are becoming more drought-prone. It is also recognized as a potential source of resistance to several important diseases in legumes, such as ascochyta blight. Nevertheless, the lack of detailed genomic and/or transcriptomic information hampers further exploitation of grass pea resistance-related genes in precision breeding. To elucidate the pathways differentially regulated during ascochyta-grass pea interaction and to identify resistance candidate genes, we compared the early response of the leaf gene expression profile of a resistant L. sativus genotype to Ascochyta lathyri infection with a non-inoculated control sample from the same genotype employing deepSuperSAGE. This analysis generated 14.387 UniTags of which 95.7% mapped to a reference grass pea/rust interaction transcriptome. From the total mapped UniTags, 738 were significantly differentially expressed between control and inoculated leaves. The results indicate that several gene classes acting in different phases of the plant/pathogen interaction are involved in the L. sativus response to A. lathyri infection. Most notably a clear up-regulation of defense-related genes involved in and/or regulated by the ethylene pathway was observed. There was also evidence of alterations in cell wall metabolism indicated by overexpression of cellulose synthase and lignin biosynthesis genes. This first genome-wide overview of the gene expression profile of the L. sativus response to ascochyta infection delivered a valuable set of candidate resistance genes for future use in precision breeding.This work was supported by the project ERANET-PG-LEGRESIST (GEN2006-27798-C6-5-/VEG) and by Fundação para a Ciência e a Tecnologia through Grants #PEst-OE/EQB/LA0004/2011 and #PTDC/AGR-GPL/103285/2008. NFA and MCVP were supported by Fundação para a Ciência e a Tecnologia (SFRH/BD/44357/2008 and Research Contracts by the Ciência 2008 program respectively).Peer reviewedPeer Reviewe

    In planta identification of putative pathogenicity factors from the chickpea pathogen Ascochyta rabiei

    No full text
    Trabajo presentado en la 3rd Annual Conference of the COST Action Sustain (FA1208), celebrada en Banyuls s/ Mer (France) del 17 al 19 de febrero de 2016.The most important foliar diseases in legumes worldwide are ascochyta blights. Health or disease is the result of a battle between plants and their pathogens. However, in the Ascochyta-legume pathosystem most studies focused on the identification of resistance genes in the host, while very little is known about the pathogenicity factors of Ascochyta spp. This study aimed at the identification of pathogenicity factors of ascochyta blight pathogens using Ascochyta rabiei as a model. Towards this objective we used NGS for the de novo sequencing of the A. rabiei transcriptome, and to identify genes differentially expressed by the fungus during infection of chickpea leaves in comparison to the fungus growing under artificial conditions. Combining RNA-Seq and MACE data we generated a comprehensive transcriptome data base comprising 22,725 assembled A. rabiei contigs with an average length of 1178 bp. Since pathogenicity factors are usually secreted, we predicted the A. rabiei secretome, yielding 550 putatively secreted proteins. Accurate transcriptome quantification by MACE identified 597 transcripts that were up-regulated during infection. An analysis of these genes identified a collection of candidate pathogenicity factors and effectors such as cell wall-degrading enzymes, toxins and genes involved in the detoxification of fungitoxic compounds produced by the plant as a defense.N

    Bulked segregant transcriptome analysis in pea identifies key expression markers for resistance to Peyronellaea pinodes

    No full text
    Peyronellaea pinodes is a devastating pathogen of pea crop. Quantitative trait loci (QTL) associated with resistance have been identified, as well as genes differentially expressed between resistant and susceptible pea lines. The key question is which of these many genes located into these QTLs, or differentially expressed, are the key genes that distinguish resistant from susceptible plants and could be used as markers. To identify these key genes, in the present study we applied MACE (Massive Analysis of cDNA Ends) -Seq to a whole Recombinant Inbred Line population segregating for resistance to this disease and their parental lines and identified those genes which expression was more correlated with the level of resistance. We also compared gene expression profiles between the most resistant and the most susceptible families of the RIL population. A total of 6780 transcripts were differentially expressed between the parental lines after inoculation. Of them, 803 showed the same expression pattern in the bulks formed by the most resistant and most susceptible RIL families. These genes, showing a consistent expression pattern, could be used as expression markers to distinguish resistant from susceptible plants. The analysis of these genes also discovered the crucial mechanisms acting against P. pinodes.This study was supported by projects PID2020-114668RB-100 and EU-FP/-Legato, funded by MCIN/AEI/10.13039./5011000110033 and by European Research Council, respectively.Peer reviewe
    corecore